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G estational age at birth (GAB) is an important determinant
of child health and development. Worldwide, approxi-
mately 13 million newborns are born preterm (GAB<37

weeks) annually.1 Prematurity is associated with morbidity and
mortality,2,3 including neurodevelopmental problems, such as
cerebral palsy, intellectual disability, learning disability, and poor
motor development.4-6 Preterm birth is reportedly associated
with increased risks of attention-deficit/hyperactivity disorder
(ADHD), autism spectrum disorder,7-9 and psychiatric disorders
in adulthood.10 In some countries, postterm birth (GAB≥42
weeks) accounts for up to 10% of births11 and is associated with
adverse birth outcomes, increased neonatal mortality, cognitive
impairment, and increased risk of ADHD.12

Few studies13,14 have investigated the associations of GAB
with brain structures despite the dynamic neurodevelop-
ment that occurs during early life. During the third trimester
of gestation, there is a 4-fold increase in brain size accompa-
nied by marked growth of brain surface area, resulting in the
emergence of sulci and gyri.15,16 Thus, birth before the pre-
sumed optimal gestational duration (approximately 40 weeks)
may be associated with disruption of neurodevelopmental pro-
cesses in late pregnancy that persist during postnatal life.

Prior studies17-22 often focused on children born ex-
tremely preterm (<28 weeks of gestation) or very preterm (<34
weeks of gestation) and found less gray and white matter vol-
ume in premature children and adolescents. These studies17-22

IMPORTANCE Preterm and postterm births are associated with adverse neuropsychiatric
outcomes. However, it remains unclear whether variation of gestational age within
the 37- to 42-week range of term deliveries is associated with neurodevelopment.

OBJECTIVE To investigate the association of gestational age at birth (GAB) with structural
brain morphometry in children aged 10 years.

DESIGN, SETTING, AND PARTICIPANTS This population-based cohort study included pregnant
women living in Rotterdam, the Netherlands, with an expected delivery date between April 1,
2002, and January 31, 2006. The study evaluated 3079 singleton children with GAB ranging
from 26.3 to 43.3 weeks and structural neuroimaging at 10 years of age from the Generation
R Study, a longitudinal, population-based prospective birth cohort from early pregnancy
onward in Rotterdam. Data analysis was performed from March 1, 2019, to February 28,
2020, and at the time of the revision based on reviewer suggestions.

EXPOSURES The GAB was calculated based on ultrasonographic assessment of crown-rump
length (<12 weeks 5 days) or biparietal diameter (�12 weeks 5 days) in dedicated
research centers.

MAIN OUTCOMES AND MEASURES Brain structure, including global and regional brain
volumes and surface-based cortical measures (thickness, surface area, and gyrification),
was quantified by magnetic resonance imaging.

RESULTS In the 3079 children (1546 [50.2%] female) evaluated at 10 years of age, GAB was
linearly associated with global and regional brain volumes. Longer gestational duration was
associated with larger brain volumes; for example, every 1-week-longer gestational duration
corresponded to an additional 4.5 cm3/wk (95% CI, 2.7-6.3 cm3/wk) larger total brain volume.
These associations persisted when the sample was restricted to children born at term
(GAB of 37-42 weeks: 4.8 cm3/wk; 95% CI, 1.8-7.7 cm3/wk). No evidence of nonlinear
associations between GA and brain morphometry was observed.

CONCLUSIONS AND RELEVANCE In this cohort study, gestational duration was linearly
associated with brain morphometry during childhood, including within the window
of term delivery. These findings may have marked clinical importance, particularly given
the prevalence of elective cesarean deliveries.
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used categorical indexes for GAB based on somewhat arbi-
trary cutoffs (eg, extremely, very, or late preterm) rather than
gestational duration as a quantitative trait of fetal maturity. Few
studies23,24 have examined the associations of gestational du-
ration and developmental outcomes in children born at term.
Longer gestation in term-born children has been associated
with higher scores of cognitive and motor development early
in life. In addition, 2 neuroimaging studies that used a group
of approximately 100 term-born children (aged 6-10 years)
found that longer gestational duration was associated with
larger gray matter volumes, in particular temporal and pari-
etal regions,25 and linear associations of larger GAB with en-
hanced local and global network efficiency of structural
networks.26

Given the novelty of investigating brain morphometric out-
comes among children born at term, we examined the pro-
spective association of GAB as a quantitative trait with brain
morphometry assessed 10 years later using structural neuro-
imaging in a large population-based cohort. We used an ex-
ploratory approach that involved both global and regional met-
rics of brain development without defining specific regions of
interest. We hypothesized that higher GAB would be associ-
ated with larger global and regional brain volumes, even within
the term range of gestational duration. Mechanistically,
we hypothesized that a higher GAB is positively associated with
cortical surface area and gyrification (ie, cortical folding)
because of rapid expansion of the cerebral cortex in the third
trimester of pregnancy.

Methods
Setting and Design
This cohort study was embedded in the Generation R Study, a
population-based cohort in Rotterdam, the Netherlands. Preg-
nant women living in Rotterdam with an expected delivery date
between April 1, 2002, and January 31, 2006, were invited to
participate.27 Enrolled children were followed up from fetal life
onward. Data analysis was performed from March 1, 2019, to
February 28, 2020, and at the time of the revision based on
reviewer suggestions. Written informed consent was ob-
tained from all participants, and all data are deidentified. The
Generation R Study was approved by the Medical Ethical Com-
mittee of the Erasmus Medical Center, Rotterdam. All proce-
dures were conducted in accordance with the World Medical
Association Declaration of Helsinki.28

Study Population
The study enrolled 9778 mothers who gave birth to 9749 live-
born children (eFigure 1 in the Supplement). Twin pregnan-
cies were excluded because of the increased risk of prematu-
rity and twin-related complications,29 resulting in 9418
singletons with information on GAB. Of these, 8270 children
were invited to the research center at 10 years of age. All 5669
children visiting the center were invited to undergo brain mag-
netic resonance imaging (MRI). In total, 3857 children under-
went neuroimaging. The final study population comprised
3079 children after excluding 23 children with major inciden-

tal findings, 89 with missing T1-weighted MRIs or artifacts be-
cause of braces or retainers, 44 with heterogeneous scanning
parameters, and 622 with insufficient image quality (based on
visual inspection of T1-weighted MRIs and FreeSurfer
reconstructions).30,31

Gestational Age at Birth
Gestational age was determined by ultrasonography during pre-
natal visits at the research center. Standard methods of fetal
ultrasonographic measurements have been previously
described.32 Interobserver and intraobserver intraclass corre-
lation coefficients were greater than 0.98.32 Crown-rump length
was used for pregnancy dating until a gestational age of 12
weeks 5 days (<65 mm, n = 902). Biparietal diameter was used
for pregnancy dating from 12 weeks 5 days onward (>23 mm,
n = 1790). For the 387 women who did not attend the prena-
tal visits, we retrieved gestational age from the Netherlands
National Obstetric Register. Preterm birth was defined as de-
livery occurring at less than 37 weeks of gestation (n = 138),
term birth as GAB in the window of 37 weeks 0 days through
41 weeks 6 days (n = 2718), and postterm birth as GAB of 42
weeks or greater (n = 223).33 For illustrative purposes, in
eFigure 2 in the Supplement, we subdivided term birth into
categories of early, full, and late term.33

Image Acquisition and Processing
Brain images were acquired on a 3.0-T MRI scanner (Discov-
ery MR750, GE Healthcare) using an 8-channel head coil.
After a localizer, T1-weighted structural images were
acquired with an inversion recovery–prepared fast spoiled
gradient recalled sequence. Sequence parameters (option
BRAVO) were as follows: repetition time, 8.77 milliseconds;
echo time, 3.4 milliseconds; inversion time, 600 millisec-
onds; flip angle, 10°; field of view, 220 × 220 mm; acquisi-
tion matrix, 220 × 220; slice thickness, 1 mm; number of
slices, 230; voxel size, 1 × 1 × 1 mm; and arc acceleration, 2.34

Images were processed using FreeSurfer, version 6.0, an
open source software for analyzing brain images.35,36 Global
and regional volumes, including total brain, cerebral and
cerebellar gray, and white matter volumes, as well as subcor-
tical gray matter volumes, including thalamus, amygdala,
hippocampus, putamen, pallidum, caudate, and nucleus

Key Points
Question Is there an association of gestational age at birth with
structural brain morphometry in childhood?

Findings In this population-based cohort study of 3079 singleton
children, gestational duration was associated with global and
regional brain volumes 10 years after birth and these linear
associations persisted when the sample was restricted to
term-born children. Consistent with the rapid expansion of brain
volume during the third trimester, gestational age at birth was
associated with more gyrification and cortical surface area.

Meaning Gestational duration may be important for long-term
neurodevelopment and should be considered a continuum of
development throughout pregnancy.
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accumbens, were measured. A surface-based stream quanti-
fied cortical thickness, cortical surface area, and gyrification.
FreeSurfer morphometry had good test-retest reliability
across scanners and field strengths.37,38 FreeSurfer recon-
structions were visually inspected,30,31 and images not suit-
able for analysis were excluded. An automated quality
metric39 found no correlation with GAB (r = −0.01, P = .53).

Covariates
Potential confounding variables were selected based on the ex-
isting literature.40,41 Self-reported questionnaire data and
medical record data measured before child birth provided in-
formation on maternal ethnicity,42 age at intake, marital sta-
tus, educational level, psychopathologic symptoms,43,44 smok-
ing and alcohol use during pregnancy, and family income.
Medical registries provided information on obstetric vari-
ables, including fetal distress, mode of delivery, 5-minute
Apgar score, and calendar year of birth. Child sex and age at
neuroimaging were also included.

Statistical Analysis
For descriptive purposes, children were categorized as pre-
term (<37 weeks), term (≥37 and <42 weeks), and postterm (≥42
weeks) delivery. Linear regression was used to investigate the
association of the quantitative trait GAB with global and re-
gional brain volumes (eFigure 3 in the Supplement). Subcor-
tical volumes were standardized to enable comparison of the
effect estimates of GAB between subcortical structures. Non-
linear associations of GAB with brain morphometry were ex-
amined using quadratic models and models with natural cu-
bic splines with knots at 30, 32, 34, 37, 38, 39, 40, and 42 weeks.
We performed additional analyses among children born at term
to examine whether associations were also present in this nar-
row range of gestational duration. To investigate the associa-
tion between GAB and surface-based cortical measures, we
used vertexwise linear regression models with a custom in-
house QDECR package. To compare the results with existing
studies17-22 using clinically defined categories, we also ap-
plied linear regression models with the preterm, term, and post-
term categories; term-born children served as the reference
group.

Model 1 was minimally adjusted for child sex and age at
neuroimaging assessment. Model 2 was further adjusted for
maternal characteristics, including ethnicity, age at neuroim-
aging, marital status, educational level, psychopathologic
symptoms, smoking and alcohol use during pregnancy, and
family income. Calendar year of birth was not included as a
covariate because it was not associated with gestational age
or brain characteristics. Models with subcortical outcomes were
additionally adjusted for intracranial volume.

In addition, we examined whether the association of
GAB with brain morphometry was moderated by sex. To
ensure that the associations of GAB with brain volumes were
not driven by adverse perinatal events, children exposed to
perinatal complications, including maternal preeclampsia,
diabetes, pregnancy-induced hypertension, urgent cesarean
delivery, intrauterine growth restriction, low birth weight
(<2500 g), suspected fetal distress, a 5-minute Apgar score

below 7, and premature or postterm birth, were excluded in
sensitivity analyses.

Missing values of the covariates were imputed using
multivariate imputation by chained equations with 10
imputations.45 We report pooled results. Statistical signifi-
cance was defined as α < .05 (2-sided). In the primary analy-
ses, a false discovery rate correction was applied to minimize
false-positive findings attributable to multiple comparisons.46

Surface-based analyses were corrected for multiple testing
using built-in gaussian Monte Carlo simulations.47 The cluster-
forming threshold was set to P = .001 because this value cor-
responds closely to a false-positive rate of 0.05,48 with fur-
ther Bonferroni correction for independent analysis of each
hemisphere (P < .025 clusterwise). All statistical analyses were
performed using R statistical software, version 3.5.1 (R Foun-
dation for Statistical Computing).

For nonresponse analyses, we used analyses of variance
or the Wilcoxon test for continuous variables and the χ2

test for categorical variables to compare maternal and child
characteristics between responders and nonresponders
at follow-up.

Results
Descriptive Statistics
This study evaluated 3079 children (1546 [50.2%] female) at
10 years of age. Table 1 presents information on the study popu-
lation. Mothers of preterm-born children less frequently had
a partner (109 [79.0%] vs 2405 [88.5%], P = .001), had a lower
educational level (53 [38.4%] vs 1411 [51.9%], P = .01), and had
a lower income (<€1200 [US $1550] per month: 33 [23.9%] vs
423 [15.6%], P < .001) than did mothers of children born at
term. Mothers of children born preterm more often had pre-
eclampsia, diabetes, and pregnancy-related hypertension (22
[15.9%] vs 179 [6.6%], P < .001) and more often underwent
cesarean delivery (33 [23.9%] vs 306 [11.3%], P < .001). Ma-
ternal sociodemographic or lifestyle factors did not differ be-
tween the postterm and the term-born groups. However, chil-
dren born postterm more often were delivered via cesarean
(43 [19.3%] vs 306 [11.3%], P < .001) and more often had signs
of fetal distress (27 [12.1%] vs 195 [7.2%], P = .01).

Global and Regional Brain Volumes
Table 2 and Figure 1 report a positive association of GAB and
total brain volume (B = 4.5 cm3/wk; 95% CI, 2.7-6.3 cm3/wk).
In addition, GAB was positively associated with cerebral gray
matter (2.8 cm3/wk; 95% CI, 1.8-3.7 cm3/wk), cerebral white
matter (1.2 cm3/wk; 95% CI, 0.3-2.0 cm3/wk), cerebellar
gray matter (0.4 cm3/wk; 95% CI, 0.2-0.5 cm3/wk), cerebellar
white matter (0.1 cm3/wk; 95% CI, 0.1-0.2 cm3/wk), and sub-
cortical gray matter (0.2 cm3/wk; 95% CI, 0.1-0.2 cm3/wk) vol-
ume. These associations remained after correction for mul-
tiple comparisons. Of importance, the associations and effect
estimates of GAB with global and regional brain volumes re-
mained intact when restricting the sample to children born at
term with the exception of cerebellar gray matter (Table 2 and
Figure 1). Furthermore, we did not observe any interaction
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of sex in the association of GAB with global brain volumes
(eTable 1 in the Supplement).

Post hoc analyses found that longer gestational duration
was associated with larger volumes of the thalamus, caudate,
putamen, and pallidum (eFigure 4 in the Supplement). No as-
sociations were observed between GAB and amygdala, hippo-
campus, or nucleus accumbens volume.

Cerebral Cortex Morphometry
Cortical thickness and GAB were associated in a few small
regions of the superior temporal lobe, cuneus, and inferior
parietal lobe, exhibiting local reduction of cortical thickness
(Figure 2A). In contrast, the association of GAB with corti-
cal surface area was widespread across the neocortex
(Figure 2B). Longer gestational duration was associated with

larger surface area in the inferior and superior parietal
regions, inferior and middle temporal regions, middle fron-
tal and orbitofrontal regions, rostral anterior cingulate,
and fusiform gyrus. Likewise, widespread positive associa-
tions of GAB and neocortical gyrification, including superior
parietal lobe, postcentral region, fusiform gyrus, insular
cortex, and anterior cingulate cortex, were observed
(Figure 2C). Results were similar in children born at term
(Figure 3). Gestational age at birth was associated with a
thinner cortex in the superior temporal region (Figure 3A),
with larger surface area and gyrification in the frontal, pari-
etal, and temporal regions (Figure 3B and C). Specific infor-
mation on the associated brain regions (size, Talairach
coordinates, and P values) are presented in eTables 2 and 3
in the Supplement.

Table 1. Demographic Characteristics of the Study Populationa

Characteristic Term birth (n = 2718) Preterm birth (n = 138) Postterm birth (n = 223)
Maternal characteristics

Age at intake, mean (SD), y 31.0 (4.9) 30.7 (5.1) 31.4 (4.5)

Multiparous 323 (11.9) 17 (12.3) 23 (10.3)

Pregnancy complicationsb 179 (6.6) 22 (15.9) 11 (4.9)

Ethnicity

Dutch 1569 (57.7) 70 (50.7) 132 (59.2)

Non-Dutch, Western 323 (11.9) 16 (11.6) 36 (16.1)

Non-Dutch, non-Western 826 (30.4) 52 (37.7) 55 (24.7)

Educational level

Primary or lower 195 (7.2) 13 (9.4) 13 (5.8)

Secondary 1112 (40.9) 72 (52.2) 82 (36.8)

Higher 1411 (51.9) 53 (38.4) 128 (57.4)

Monthly household income, US$

<1550 423 (15.6) 33 (23.9) 34 (15.2)

1550-2580 463 (17.0) 34 (24.6) 23 (10.3)

>2580 1832 (67.4) 71 (51.4) 166 (74.4)

Marital status (married or with
partner)

2405 (88.5) 109 (79.0) 202 (90.6)

Smoking during pregnancy

Never in pregnancy 2101 (77.3) 104 (75.4) 176 (78.9)

Until pregnancy was known 231 (8.5) 10 (7.2) 23 (10.3)

Continued in pregnancy 386 (14.2) 24 (17.4) 24 (10.8)

Alcohol use during pregnancy

Never in pregnancy 1093 (40.2) 53 (38.4) 89 (39.9)

Until pregnancy was known 380 (14.0) 22 (15.9) 25 (11.2)

Continued in pregnancy,
occasionally

985 (36.2) 49 (35.5) 85 (38.1)

Continued in pregnancy,
frequentlyc

260 (9.6) 14 (10.1) 24 (10.8)

Psychopathologic symptoms,
mean (SD)

0.3 (0.4) 0.4 (0.4) 0.3 (0.4)

Birth and child characteristics

Cesarean delivery 306 (11.3) 33 (23.9) 43 (19.3)

Suspected fetal distress 195 (7.2) 15 (10.9) 27 (12.1)

Apgar score at 5 min <7 28 (1.0) 4 (2.9) 2 (0.9)

Gestational age at birth,
mean (SD) [range], wk

40.0 (1.1) [37.0-41.9] 34.6 (2.7) [26.3-36.9] 42.3 (0.3) [42.0-43.4]

Birth weight, mean (SD), g 3472.6 (485.9) 2345.6 (654.7) 3785.7 (475.6)

Male 1340 (49.3) 65 (47.1) 128 (57.4)

Age at MRI, mean (SD), y 10.1 (0.6) 10.2 (0.6) 10.1 (0.6)

Abbreviation: MRI, magnetic
resonance imaging.
a Data are presented as number

(percentage) of study participants
unless otherwise indicated. No data
were missing for these variables
because they were imputed using
multiple imputation methods.
Categorization was based on
gestational age at birth: term birth
(gestational age of 37-42 weeks),
preterm birth (gestational age
<37 weeks), and postterm birth
(gestational age of �42 weeks).

b Pregnancy complications included
preeclampsia, diabetes, and/or
pregnancy-induced hypertension.

c Frequent continued alcohol use is
defined as 1 or more glasses of
alcohol per week in at least 2
trimesters.
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Nonlinear Associations
We found no evidence of nonlinear associations of GAB with
brain volume and morphometry. Models with quadratic or
natural cubic splines did not improve model fit compared with
linear models (eTable 4 in the Supplement).

Categorical Analyses
With the use of a categorical approach, children born preterm
had a smaller total brain volume, cerebral gray matter vol-
ume, subcortical gray matter volume, cerebellar gray matter
volume, and cerebellar white matter volume. Total brain vol-

ume of children born preterm had an adjusted difference of
26.5 cm3 compared with children born at term (B = −26.5;
95% CI, −42.1 to −11.0; P < .001). Children born postterm had
a larger cerebral gray matter volume and subcortical gray mat-
ter volume (eTable 5 in the Supplement).

Sensitivity Analyses
Sensitivity analyses of children born at term without perina-
tal complications (n = 2264) showed similar associations
between GAB and total brain matter (5.5 cm3/wk; 95% CI,
2.2-8.7 cm3/wk), cerebral gray matter (3.1 cm3/wk; 95% CI,

Figure 1. Linear Association Between Gestational Age at Birth and Total Brain Volumes in Children
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Linear association between
gestational age at birth and total
brain volume in all 3079 children (A)
and the 2718 term-birth children (B)
at 10 years of age. Models were fully
adjusted and corrected for child sex,
child age at the neuroimaging
assessment, maternal ethnicity,
maternal age at intake, marital status,
educational level, psychopathologic
symptoms during pregnancy,
smoking and alcohol use during
pregnancy, and family income.
Shaded areas indicate the 95% CIs
of the predicted values.

Table 2. Association of Gestational Age at Birth With Global Brain Volumesa

Model

Total brain volume
Cerebral gray
matter volume

Cerebral white
matter volume

Cerebellar gray
matter volume

Cerebellar white
matter volume

Subcortical gray
matter volumeb

Difference
(95% CI)

P
value

Difference
(95% CI)

P
value

Difference
(95% CI)

P
value

Difference
(95% CI)

P
value

Difference
(95% CI)

P
value

Difference
(95% CI)

P
value

All children
GAB, wk (n = 3079)

Model 1 6.1 (4.2
to 8.0)

<.001 3.7 (2.7
to 4.7)

<.001 1.7 (0.9
to 2.6)

<.001 0.5 (0.3
to 0.7)

<.001 0.2 (0.1
to 0.2)

<.001 0.2 (0.1
to 0.2)

<.001

Model 2 4.5 (2.7
to 6.3)

<.001c 2.8 (1.8
to 3.7)

<.001c 1.2 (0.3
to 2.0)

.006c 0.4 (0.2
to 0.5)

<.001c 0.1 (0.1
to 0.2)

<.001c 0.2 (0.1
to 0.2)

<.001c

Term children
GAB, wk (n = 2718)

Model 1 6.7 (3.6
to 9.7)

<.001 3.8 (2.2
to 5.4)

<.001 2.3 (0.9
to 3.7)

.002 0.4 (0.1
to 0.8)

NA 0.1 (0.05
to 0.2)

.003 0.1 (0.01
to 0.2)

.03

Model 2 4.8 (1.8
to 7.7)

.002c 2.8 (1.2
to 4.3)

<.001c 1.6 (0.3
to 3.0)

.02c 0.2 (−0.1
to 0.6)

NA 0.1 (0.03
to 0.2)

.01c 0.1 (0.01
to 0.2)

.03c

Abbreviations: GAB, gestational age at birth; NA, not applicable.
a In the results of these regression models, the effect estimates represent

the difference in cubic centimeters for brain volumes per 1-week-longer
gestational duration. Model 1 is a minimally adjusted model corrected for
child sex and age at the neuroimaging assessment. Model 2 is a fully adjusted
model, corrected for child sex and age at the neuroimaging assessment,
maternal ethnicity, age at intake, marital status, educational level,

psychopathologic condition, smoking and alcohol use during pregnancy,
and family income.

b Intracranial volume was additionally adjusted for in both models.
c The associations survived a false discovery rate correction for multiple

testing (applied model 2 only).
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1.4-4.8 cm3/wk), cerebral white matter (2.1 cm3/wk; 95% CI,
0.5-3.6 cm3/wk), cerebellar white matter (0.1 cm3/wk; 95% CI,
0.02-0.2 cm3/wk), and subcortical gray matter (0.1 cm3/wk;
95% CI, 0.01-0.2 cm3/wk) volumes. However, in this sub-
group, GAB was not associated with cerebellar gray matter
volume (0.1 cm3/wk; 95% CI, −0.2 to 0.5 cm3/wk).

Nonresponse Analyses
Respondents differed from nonrespondents (eTable 6 in the
Supplement). Specifically, respondents were older, were more
likely of Dutch origin, had a higher educational level, and were
less likely to smoke during pregnancy.

Discussion
In this longitudinal, population-based cohort study, we found
that GAB was positively associated with global and regional
brain volumes in children at 10 years of age. Our findings sug-
gest that the volumetric association with GAB is a conse-
quence of larger cortical surface area and gyrification in the
absence of widespread differences in cortical thickness. Our
results were robust to confounding by several sociodemo-
graphic and lifestyle characteristics. Of importance, we found
that these associations remained present when restricting the
analyses exclusively to children born at term, which supports
a model in which gestational duration should be viewed as a
continuum of development throughout pregnancy. More-
over, we observed no evidence of nonlinear associations using
spline regression analyses, a flexible and sensitive method for
assessing nonlinearity. In addition, child sex did not moder-
ate the association of GAB with brain morphometry. Overall,
these findings suggest that a cutoff for the designation of pre-
term birth as less than 37 weeks of gestation may not be con-
sistent with brain development.

By reporting associations of GAB with global and regional
brain volumes, our findings complement previous neuroim-
aging studies demonstrating that longer gestational duration
was associated with larger temporal and parietal gray matter
volumes25 and reporting linear associations of higher GA with
enhanced local and global network efficiency.26 These re-
sults are further supported by our findings that GAB was as-
sociated with brain regions that are functionally and structur-
ally integrated (eg, the cerebellum and thalamus) (eFigure 4
in the Supplement). In addition, temporal and parietal re-
gions (Figure 2 and Figure 3) are involved in higher-order cog-
nitive processes, including auditory perception and process-
ing, language production and perception, and declarative
memory. Even though larger brain size typically has been as-
sociated with enhanced cognitive functioning (including gen-
eral cognitive ability, working memory, reading, vocabulary,
and set-shifting tasks) in children and adolescents,49,50 a pre-
vious longitudinal study51 found that neuroanatomical corre-
lates of intelligence, for example, are dynamic and change
throughout life. The association between psychiatric disor-
ders and brain size is less evident, but clinical studies52-54

in children with ADHD found smaller volumes in frontal, pa-
rietal, and cerebellar structures. Furthermore, individual varia-

Figure 2. Gestational Age at Birth and Cortical Thickness, Surface Area,
and Gyrification in All Children
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Surface-based analysis was performed for 3065 children with a gestational age at
birth ranging from 26.3 to 43.4 weeks. The model was adjusted for child sex, child
age at neuroimaging, maternal ethnicity, maternal age at intake, marital status,
educational level, psychopathologic conditions during pregnancy, smoking and
alcohol use during pregnancy, and family income. Colored clusters represent regions
of the brain that were positively (red to yellow) and negatively (dark to light blue)
associated with gestational age at birth that survived the clusterwise (Monte Carlo
simulation with 5000 iterations) correction for multiple comparisons (P < .001)
(eTable 2 in the Supplement). A indicates anterior; I, inferior; L, lateral; LH, left
hemisphere; M, medial; P, posterior; RH, right hemisphere; S, superior.
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tions in brain size and shape occur.55 Caution is warranted re-
garding potential functional consequences of the observed
association between GAB and brain morphometry.

Several mechanisms are possible. First, the largest abso-
lute volumetric increase in brain volume during fetal devel-
opment occurs during the third trimester, in particular, the ex-
pansion of cortical gray matter.13,56-58 The growth rate of the
cerebellum also peaks during the third trimester.59 There-
fore, on the basis of the observed linear association with global
brain volume across the full range of GAB, a parsimonious ex-
planation could be that birth is necessary and sufficient to at-
tenuate the rapid expansion of the neocortex in the late third
trimester. In contrast, we did not observe extensive differ-
ences by GAB in cortical thickness. Cortical neurogenesis
and proliferation are largely complete by the middle of
gestation.13,14 In addition, cortical lamination (ie, inside-out
layering of the cortex) is already well established by the eighth
month of pregnancy, although timing appears to differ slightly
among brain regions.14

Second, GAB is often associated with multiple factors,60

including psychological distress, maternal age, substance use,
poor nutrition, or fetal growth restriction. Such stress-
associated factors may affect the timing of birth and fetal matu-
ration. In line with the developmental origins of health and dis-
ease framework, the current study suggests that even small
variations in GAB may be associated with fetal programming
differences in neurodevelopment.61 Our results suggest that
among healthy term-born children, GAB may be linearly and
positively associated with brain volume, surface area, and
gyrification when assessed in childhood at 10 years of age.
Although we considered a variety of confounding factors,
we cannot exclude the possibility of residual confounding.

Third, our results could potentially be explained by ge-
netic predisposition. Previous studies30,62-65 reported ge-
netic variations that are associated with gestational duration.
For instance, Adkins et al62 found polymorphisms of insulin
and insulinlike growth factor 2 associated with an increased
risk of being small for gestational age. Moreover, several ma-
ternal and fetal genes have been identified through recent
genome-wide association studies63,64 of gestational duration
and preterm birth. Genetic factors associated with global and
specific brain volumes have also been reported.30,65 Thus, our
findings potentially can be explained by a shared genetic sus-
ceptibility that is associated with gestational duration and brain
morphometry. However, it is likely that both genetic and en-
vironmental factors explain the observed associations.

Further research is needed to investigate underlying
mechanisms and causal pathways of the association between
GAB with childhood brain structure and function. The results
would be particularly important for obstetricians, neonatolo-
gists, and pediatricians. The findings of the present study have
substantial potential clinical importance, considering the dis-
cussions regarding expectant management vs labor induction66

and the increasing prevalence of elective cesarean deliveries
worldwide, which are typically planned 1 or 2 weeks before the
estimated full-term date.67 In line with recommendations of
the World Health Organization, our results cautiously sup-
port a reduction of elective cesarean deliveries.

Figure 3. Gestational Age at Birth and Cortical Thickness, Surface Area,
and Gyrification in Children Born at Term
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Surface-based analysis was performed for 2706 children with a gestational age at
birth ranging from 37.0 weeks to 41.9 weeks. The model was adjusted for child sex,
child age at neuroimaging, maternal ethnicity, maternal age at intake, marital
status, educational level, psychopathologic conditions during pregnancy, smoking
and alcohol use during pregnancy, and family income. Colored clusters represent
regions of the brain that were positively (red to yellow) and negatively (dark to light
blue) associated with gestational age at birth that survived the clusterwise (Monte
Carlo simulation with 5000 iterations) correction for multiple comparisons (P < .001)
(eTable 3 in the Supplement). A indicates anterior; I, inferior; L, lateral; LH, left
hemisphere; M, medial; P, posterior; RH, right hemisphere; S, superior.
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Strengths and Limitations
Study strengths were the prospective design, which enabled
a temporal association between GA and brain morphometry;
measurement of GAB by ultrasonography; adjustment for mul-
tiple confounders; and large-scale pediatric neuroimaging
(>3000 children), allowing for detection of small effect sizes.

Several limitations should also be mentioned. First, brain
morphometry was measured only once, at 10 years of age; thus,
whether the observed differences were transient or persis-
tent is unknown. Second, although childhood brain structure
has been associated with a diversity of cognitive, emotional,
and sensorimotor functions in the general population,68 we
cannot yet address the functional implications of the ob-
served morphologic differences. Although the current study
was specifically focused on examining brain morphometry,
future studies should investigate the associations of GAB with
repeated assessments of brain morphometry and multi-
modal imaging in combination with behavioral and cognitive
outcomes in large population-based cohorts. Third, the non-

response analyses suggested a possible selection bias. Fourth,
because this was an observational study, unmeasured re-
sidual (genetic and environmental) confounding limited the
ability to establish causal inferences.

Conclusions
The findings of this study suggest that GAB is associated with
widespread differences in childhood brain morphometry in
children born at term. Longer gestational duration was asso-
ciated with larger brain volume, cortical surface area, and cor-
tical gyrification. Thus, physiologic processes during in utero
development may have an enduring influence across the life
span. Our findings highlight the importance of the last few
weeks of pregnancy in association with neurodevelopment for
which additional studies are warranted to evaluate the poten-
tial effect on international clinical guidelines for elective ce-
sarean delivery.
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